Posts tagged “Mobitz II

Lewis Lead Parallax

The following was recorded from a 90 year-old Caucasian man with shortness of breath.

This is very suspicious for second degree block; bigeminal PACs or PJCs with compensatory pauses are also possibilities. There is poor visualization of atrial activity due to background noise and intrinsic low voltage. The 12-lead is referenced for the best lead to visualize:

V1 seems promising; a V1 rhythm strip is acquired:

Worse still. Next, the Lewis lead:

Now the diagnosis is transparent. Before resorting to the placement of Lewis electrodes, the voltage gain can be doubled and noise reduction strategies applied. These were not utilized here.

12-lead under Lewis electrode placement:

There is diminished QRS voltage, new inferior Q-waves and ST-segment abnormalities. This could easily be misinterpreted, but it is an artifact of the lead system.

Switching back to standard placement. Different electrodes were used at this time and the voltage is altered; the background noise has faded but the atria remain quiet:

This patient was ultimately found to be pancytopenic (WBCs 3.1, RBCs 1.17, Hem 4.8, Crit 13.0, Platelets 96, Neu 23, Lym 60, Monos 16) and was worked up for myelodysplastic syndrome. The electrocardiographic findings may be associated with the anemia; they may also be incidental.

 Discussion

Christopher Watford brought the Lewis lead to my attention; he has described its physiology and advantages extensively in his blog post, Highlighting Atrial Activity on an ECG: The S5 Lead,  as well as via audio on the EMCrit Podcast with Scott Wiengart.

There are numerous alternative lead systems: Brughada leads, high and low precordial placements for visualizing poorly represented territories, systems designed to emphasize pacemaker activity, etc. Body surface mapping technologies (e.g. The 80-Lead Prime ECG) have also shown promise. Some of these lead systems are described on this site under EKG Resources.

References 

Bakker, A., et al. (2009). The lewis lead: Making recognition of P waves easy during wide QRS tachycardia. Circulation, (2009), 119; e592-e593. [Free Full Text] doi: 10.1161/CIRCULATIONAHA.109.852053

Lewis T.  (1931). Auricular fibrillation. Clinical Electrocardiography. 5th ed. London, UK: Shaw and Sons; 1931: 87–100.


The Persistence of Memory: A return to “Atypical symptoms with a critical lesion.”

In 2010, as part of a case series exploring the presentation of AV block in the setting of inferior wall STEMI, I discussed the following EKGs:

It was hypothesized from these tracings that a proximal RCA lesion was responsible for the manifest inferior wall and right ventricular involvement, likely in the setting of a right dominant coronary system owing to the AV nodal dysfunction.

Recently I was able to follow up on this case.

This was a 64 year-old Caucasian female complaining of nausea, vomiting, and a syncopal episode while attempting to ambulate. Her history was significant for HTN, hyperlipidemia, breast cancer, and a mechanical aortic valve replacement in 2005. At that time a presurgical cath had identified a 70% ostial RCA stenosis. This baseline EKG was recorded on admission:

In 2008, on the date the case study EKGs were recorded, she became progressively hypotensive while in the emergency department and required intubation and vasopressor circulatory support. During emergent catheterization stents were placed across a 99% diffuse ostial RCA lesion and a further stenosis of the distal RCA. The interventionalist described a right dominant coronary system with a small LAD and circumflex. On arrival in the ED, a troponin of 0.14ng/mL was recorded. At noon on the following day the value had climbed to 55.20 and peaked at over 90 later that evening.

Due to cardiogenic shock, both an IABP and temporary pacemaker were placed. A long ICU course ensued during which numerous abnormalities were identified and addressed including but not limited to severe sepsis, a ruptured breast implant, gall bladder disease, elevated LFTs, and a renal mass suspicious for carcinoma. The following EKGs were recorded on ICU days 2, 3, and 4.

In June of 2009 she was again admitted to the hospital, at this time with a primary diagnosis of aspirational pneumonia complicated by renal insufficiency.

A tracheotomy was placed. Respiratory failure and sepsis were treated in the ICU and ventilator weaning was begun only to rebound with recurrent episodes of septic shock. This was repeated four times over a two-month period. Renal function progressively declined, as did her baseline mental status. This is the last EGK on file for this patient:

She experienced asystolic arrest and died the next day.

Discussion

Persistent ST-segment elevation following PCI has been shown to closely reflect the presence of microvascular reperfusion injury as demonstrated by impairment of microcirculatory flow on PET imaging and intracoronary contrast echocardiography. Mechanisms of reperfusion injury include neutrophil infiltration, tissue edema, and direct mivrovascular damage following tissue hypoxia. Impaired microcirculatory reperfusion resulting from these mechanisms has been correlated with more extensive infarction and a worse clinical outcome. Roughly 30%-40% of patients undergoing PCI demonstrate persistent STE on hospital discharge.

In their 1999 publication, Claeys et al. utilized persistent ST-segment elevation following PCI to identify patients at risk for reperfusion injury. They report, “Patients >55 years of age with systolic pressures <120mmHg were at high risk for development of impaired reperfusion compared with patients not meeting these criteria (72% versus 14%, P<0.001).” (Claeys et al., 1999, p.1972)

Also in 1999, Matetzky et al. demonstrated similar findings comparing clinical outcomes in patients with comparable angiographic results following PCI but contrasting presentations on ECG regarding the persistence of ST-segment elevation. Results of this research indicated that, “…ST segment elevation resolution was associated with better predischarge left ventricular ejection fraction…. Group B patients [those with persistent STE], as compared with those of Group A [those with early resolution of STE], had a higher incidence of in-hospital mortality (11% vs. 2%, p 0.088), congestive heart failure (CHF) (28% vs. 19%, odds ratio (OR) 4, 95% confidence interval (CI) 1 to 15, p 0.04), higher long-term mortality (OR 7.3, 95% CI 1.9 to 28, p 0.004 with Cox proportional hazard regression analysis) and long-term CHF rate (OR 6.5, 95% CI 1.3 to 33, p 0.016 with logistic regression).” (Matetzky et al., 1999, p.1932)

In 2007, Galiuto et al. investigated the clinical correlates found in patients demonstrating persistent STE following primary or rescue PCI. They report, “Such an ECG sign at hospital discharge may be considered associated with a large infarct size, and, in 30% of cases, with LV aneurysm formation and with continuing LV remodeling.” (Galiuto et al., 2007, p.1380)

These three studies reviewed between 100-150 patients each.

In 2010, however, Verouden et al. reviewed over 2100 patients undergoing PCI with the intent of further characterizing the clinical and demographic determinants of persistent ST-elevation after coronary intervention. They report that, “Incomplete ST-segment recovery was a strong predictor of long-term mortality…,” and, “…incomplete ST-segment recovery at the end of PCI occurred significantly more often in the presence of an age >60 years, nonsmoking, diabetes mellitus, left anterior descending coronary artery–related STEMI, multivessel disease, and preprocedural Thrombolysis In Myocardial Infarction grade 3 flow.” (Verouden et al., 2010, p.1692)

References

Claeys, M., et al. (1999). Determinants and prognostic implications of persistent ST-segment elevation after primary angioplasty for acute myocardial infarction: importance of microvascular reperfusion injury on clinical outcome. Circulation. 1999;99:1972-1977, doi: 10.1161/01.CIR.99.15.1972

Galiuto, L., et al. (2007). Functional and structural correlates of persistent ST elevation after acute myocardial infarction successfully treated by percutaneous coronary intervention. Heart. 2007; 93: 1376-1380, doi: 10.1136/hrt.2006.105320

Matetzky, S., et al. (1999). The significance of persistent ST elevation versus early resolution of ST segment elevation after primary PTCA. Journal of the American College of Cardiology. Vol. 34, No. 7, 1999.

Verouden, N., et al. (2010). Clinical and angiographic predictors of ST-segment recovery after primary percutaneous coronary intervention. American Journal of Cardiology. 2010;105:1692-1697.


Case No. 15: So it’s a “Trifascicular Block”?

In 2009 the AHA released recommendations for the standardization and interpretation of the electrocardiogram stating that, “The terms atypical LBBB, bilateral bundle-branch block, bifascicular block, and trifascicular block are not recommended because of the great variation in anatomy and pathology producing such patterns. The committee recommends that each conduction defect be described separately in terms of the structure or structures involved instead of as bifascicular, trifascicular, or multifascicular block.” (Rautaharju, P., et al., 2009)

Despite the ambiguity and referential instability of the term, however, the so-called “trifascicular block” remains at large in many clinical settings. So much so, in fact, that it has its own Wikipedia page: “Trifascicular block… has three features: prolongation of the PR interval (first degree AV block), right bundle branch block, and either left anterior fascicular block or left posterior fascicular block.” Wikipedia makes no mention, however, of the AHA guidelines or ongoing controversy surrounding this set of electrocardiographic features. Wikipedia concludes by stating that, “The treatment for diffuse distal conduction system disease is insertion of a pacemaker.” (Wikipedia, 2011)

The idea of “trifascicular block”, however, is not only problematic due to its potential reference to a multiplicity of histopathological substrates, but even assuming a trifascicular model of the sub-Hisian conduction system, the concept of “trifascicular block” cannot be distinguished from complete heart block. If there are only three fascicles leading into the ventricles and all three are blocked, then there is de facto complete heart block. Rather what seems to be meant by the term “trifascicular block” is a situation in which the traditional three fascicles of the left and right bundle branches all demonstrate some degree of disease or dysfunction. For example, typically a RBBB with a left anterior fascicular block and 1° AV block is considered a trifascicular block. Yet even here the situation is unclear: the 1° AV block may be due to disease in the remaining posterior left fascicle or a pathological process above the bifurcation of the His bundle resulting in an AV conduction delay.

Regardless of this semantic debate, it has been known since the early 1900s that in the predominance of human subjects the left bundle branch splits into three rather than two fascicles. Disease of the left septal fascicle has been extensively characterized electrocardiographically, histologically, and otherwise. (Riera, A., et al., 2008)

In fact, extensive individual variance complicates the branching and interconnection of the fascicles of the LBB. This is further confused by evidence indicating that fascicular blockade can occur in the absence of identifiable histological lesions. When making the diagnosis of acquired advanced distal conduction system disease, therefore, toxicological, infectious, and other reversible etiologies must first be ruled out.

Left, Diagrammatic sketches of the LBB reconstructed from transverse sections of the LBB of human hearts. Right, 4 prototypes of LBB dissected from adult normal human hearts. Note that each of these prototypes has a similar pattern among those obtained histologically. (Rautaharju, P., et al., 2009)

While the polyfascicular nature of the LBB remains largely an academic observation with limited utility in most clinical settings, this anatomical variance certainly speaks to the rationale behind the AHA recommendations. The pragmatic concern remains not whether the term “trifascicular block” is semantically sound or anatomically appropriate, however, but whether the electrocardiographic features of “trifascicular block” are sufficient evidence of advanced distal conduction system disease to warrant pacemaker implantation or prophylactic measures in anticipation of complete heart block (for example application of external pacing pads, observational admission, or specialty consultation).

I will examine three case studies exploring the utility of a “trifascicular block” nomenclature, and some treatment indications when faced with “trifascicular” disease.

Case No. 1: Mr. A, a 79 year-old Caucasian man, presents to EMS with complaints of syncope and superficial facial injuries from the subsequent fall. He reports a similar episode of “passing out” once before, but did not follow up on the incident. His medical history consists of glaucoma and a distant history of smoking.

This EKG, recorded by EMS providers at the scene, demonstrates 3rd degree heart block. An atrial rate of ~90bpm persists discontinuously behind a sub-Hisian ventricular escape rhythm of ~ 25-30bpm with LBBB morphology.

On arrival in the ED this EKG was recorded:

The P-R intervals here are constant and non-lengthening; the R-R intervals are constant and not decreasing. Both of these features are consistent with Mobitz II rather than the Wenkebach phenomenon.

This interpretation aligns well with the known pathophysiology of intermittent 3rd degree block. Lipman and Massie state that, “Clinically, [Mobitz type II] often is associated with RBBB and left axis deviation. Thus, Mobitz type II block with wide QRS complexes is often associated with lesions below the AV node. This has been confirmed by His’ bundle electrocardiograms… Mobitz type II block [is] associated with incomplete trifascicular block, is considered more serious, and is much more likely to produce Stokes-Adams attacks and necessitate pacemaker insertion.” (Lipman-Massie, 1989, p.453.)

Given symptoms suggesting Stokes-Adams syncope and evidence of advanced AV block, this patient was admitted for cardiology consultation. Several days later this EKG was obtained.

Here we see RBBB with left anterior fascicular block (R-axis at -52°, small Q in I and avL, and small R in III and avF)—exactly the findings predicted by the quotation from Lipman-Massie.

As seen here, electrocardiographic proof of intermittent sub-Hisian 3rd degree heart block may be considered evidence of poly-fascicular disease with likely future Stokes-Adams events. Current AHA guidelines regarding acquired AV block in adults state that, “Permanent pacemaker implantation is indicated for third degree and advanced second-degree AV block at any anatomic level associated with bradycardia with symptoms (including heart failure) or ventricular arrhythmias presumed to be due to AV block.” (Epstien, A., et al., 2008, e358.) In light of this, a pacemaker was placed and the patient was discharged without complications.

Case No. 2: Mr. B, a 90 year-old Caucasian man with multiple medical problems, was brought in by ambulance with reports of increased lethargy and possible altered mental status as per his nursing home care providers. A routine EKG was recorded.

This EKG demonstrates the classic “trifascicular block” features of RBBB, LAFB, and 1st degree HB. Interestingly, there is inappropriate T-wave concordance in some leads of the inferior and high lateral distribution. A previous EKG was not available for comparison and no follow up EKG was recorded, making the significance of these findings difficult to ascertain.

After sleeping for six hours in the emergency department, Mr. B was found walking to the bathroom, articulate but confused, awake and alert to his surroundings, in no ostensible distress. All laboratory assays returned within normal limits and his relatives at the bedside testified that he was behaving and mentating normally. He was discharged without follow up back to his allied nursing facility.

Case No. 3: Ms. C, a 66 year old Hispanic woman with IDDM and known coronary artery disease, presented to the emergency department with sweats, chills, dysuria, and an oral temperature of 101.4° F.

This EKG demonstrates 1st degree HB in the presence of LBBB, another classic pattern of “trifascicular” disease. Incidentally, the 0.04ms notching of the S-wave upstroke in V3 represents Cabrera’s sign, one of several types of QRS fragmentation seen in LBBB and paced rhythms, known typically to be highly specific (~90%) for prior MI, but lacking in sensitivity (~60%) (Mithilesh K., et al., 2008). This ECG feature was consistent in this case with a prior anterior wall MI in 2005.

Unsurprisingly, urinanalysis in this case confirmed the clinical suspicion of UTI and the patient was discharged on antibiotics with follow up to her primary.

Both the cases of Mr. B and Ms. C  involve patients with histories consistent with extensive distal conduction system disease and incidental electrocardiographic findings revealing “textbook” “trifascicular block”. Yet neither of these patients’ symptoms or clinical presentation was in any way correlated with the disease process manifest on EKG, and neither warranted intervention.

The initial case of Mr. A, however, involves a patient with a known pathophysiological disease model (ref. Lipman-Massie) and both electrocardiographic proof of intermittent high degree AV block and Stokes-Adams symptoms circumstantially linked to the arrhythmic disturbance. Both of these features are independent absolute indications for pacemaker therapy.

The term “trifascicular block” does not appear in the ACC/AHA/HRS 2008 Guidelines for Device-Based Therapy of Cardiac Rhythm Abnormalities. Regarding indications for pacing in acquired distal conduction system disease as represented by chronic bifascicular block, the 2008 Guidelines make the following recommendations:

  • Permanent pacemaker implantation is indicated for advanced second-degree AV block or intermittent third-degree AV block.
  • Permanent pacemaker implantation is indicated for type II second-degree AV block.
  • Permanent pacemaker implantation is indicated for alternating bundle-branch block.
  • Permanent pacemaker implantation is not indicated for fascicular block without AV block or symptoms.
  • Permanent pacemaker implantation is not indicated for fascicular block with first-degree AV block without symptoms. (Epstein A., et al., 2008, e360.)

Although case-specific, well reasoned clinical judgment is the best guiding principle of any treatment, the hope in presenting these three cases is to call into question not simply the histopathological verisimilitude of the “trifascicular block” nomenclature but to examine the case for this term’s pragmatic utility. In all three cases, the concept of “trifascicular block” proves to be a misleading descriptor, failing to capture the therapeutic relevance of the EKGs in question.

The remarks presented here are entirely the opinion of the author and should not represent advice or guidelines for any treatment, diagnosis, or test. My ambition has been to address specifically the issue of a “trifascicular block” nomenclature in device-based therapy for distal conduction system disease. There do exist contexts in which this term can be of significant value; of note is this fascinating case report from Tom Buthillet discussing a WCT, classic “trifascicular block”, and the risks of antiarrhythmic administration.

References

Dunn, M., and Lipman, B. (1989). Lipman-Massie Clinical Electrocardiography, 8th ed. Yearbook Medical Publisher Inc.

Epstein, A., et al. (2008). ACC/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities. Circulation, 2008, 117:e350-e408. doi: 10.1161/CIRCUALTIONAHA.108.189742

Marcelo, E., et al. (2007). Hemiblocks revisited. Circulation, 2007, 115:1154-1163. doi: 10.1161/CIRCULATIONAHA.106.637389

Mithilesh, K., et al. (2008). Fragmented wide QRS on a 12-lead ECG: a sign of myocardial scar and poor prognosis. Circulation Arrhythmia and Electrophysiology, 2008, 1:258-268. DOI: 10.1161/CIRCEP.107.763284

Rautaharju, P., et al. (2009). AHA/ACCF/HRS Recommendation for the standardization and interpretation of the electrocardiogram. Circulation, 2009, 119:e241-e250. doi: 10.1161/CIRCULATIONAHA.108.191096

Riera, A., et al. (2008). The history of left septal fascicular block: chronological consideration of a reality yet to be universally accepted. Indian Pacing and Electrophysiology Journal, 2008, 8(2):114-128. Retrieved from http://www.ipej.org/0802/riera2.htm

Wikipedia. (2011) Trifascicular Block. Retrieved from http://en.wikipedia.org/wiki/Trifascicular_block